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Welcome

This tutorial gives a short introduction to the most important basic concepts of probability
theory and statistics for econometricians.

This tutorial is still under construction. The two sections presented here are the first two
sections of my course Statistics for Data Analytics from Winter Term 2023, which contains a
review of probability theory.

For a quick review of the basics, I recommend sections 2 and 3 of Stock and Watson (2019):
LINK
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1 Probability

1.1 Random experiments

A random experiment is a procedure or situation where the result is uncertain and determined
by a probabilistic mechanism. An outcome is a specific result of a random experiment. The
sample space S is the set/collection of all potential outcomes.

Let’s consider some examples:

• Coin toss: The outcome of a coin toss can be ‘heads’ or ‘tails’. This random experiment
has a two-element sample space: S = {heads, tails}.

• Gender : If you conduct a survey and interview a random person to ask them about their
gender, the answer may be ‘female’, ‘male’, or ‘diverse’. It is a random experiment since
the person to be interviewed is selected randomly. The sample space has three elements:
S = {female, male, diverse}.

• Education level: If you ask a random person about their education level according to the
ISCED-2011 framework, the outcome may be one of the eight ISCED-2011 levels. We
have an eight-element sample space:

S = {Level 1, Level 2, Level 3, Level 4, Level 5, Level 6, Level 7, Level 8}.

• Wage: If you ask a random person about their income per working hour in EUR, there are
infinitely many potential answers. Any (non-negative) real number may be an outcome.
The sample space is a continuum of different wage levels.

1.2 Random variables

A random variable is a numerical summary of a random experiment. In econometrics and
applied statistics, we always express random experiments in terms of random variables. Let’s
define some random variables based on the random experiments above:
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• Coin: A two-element sample space random experiment can be transformed to a binary
random variable, i.e., a random variable that takes either 0 or 1. We define the coin
random variable as

Y =
{

1 if outcome is heads,
0 if outcome is tails.

A binary random variable is also called Bernoulli random variable.

Figure 1.1: Bernoulli random variable

• Female dummy: The three-element sample space of the gender random experiment does
not provide any natural ordering. A useful way to transform it into random variables are
dummy variables. The female dummy variable is a Bernoulli random variable with

Y =
{

1 if the person is female,
0 if the person is not female.

Similarly, dummy variables for male and diverse can be defined.

• Education: The eight-element sample space of the education-level random experiment
provides a natural ordering. We define the random variable education as the number of
years of schooling of the interviewed person:

Y = number of years of schooling ∈ {4, 10, 12, 13, 14, 16, 18, 21}.

• Wage: The wage level of the interviewed is already numerical. The random variable is

Y = income per working hour in EUR.
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Table 1.1: ISCED 2011 levels

ISCED level Education level Years of schooling
1 Primary 4
2 Lower Secondary 10
3 Upper secondary 12
4 Post-Secondary 13
5 Short-Cycle Tertiary 14
6 Bachelor’s 16
7 Master’s 18
8 Doctoral 21

1.3 Probability function

In the case of a fair coin, it is natural to assign the following probabilities to the coin variable:
P (Y = 0) = 0.5 and P (Y = 1) = 0.5. By definition, the coin variable will never take the value
2.5, so the corresponding probability is P (Y = 2.5) = 0. We may also consider intervals, e.g.,
P (Y ≥ 0) = 1 and P (−1 ≤ Y < 1) = 0.5

The probability function P assigns values between 0 and 1 to events. Specific subsets of the
real line define events. Any real number defines an event, and any open, half-open, or closed
interval represents an event as well, e.g.,

A1 = {Y = 0}, A2 = {Y = 1}, A3 = {Y = 2.5}

and
A4 = {Y ≥ 0}, A5 = {−1 ≤ Y < 1}.

We may take complements

A6 := Ac
4 = {Y ≥ 0}c = {Y < 0},

as well as unions and intersections:

A7 := A1 ∪ A6 = {Y = 0} ∪ {Y < 0} = {Y ≤ 0},

A8 := A4 ∩ A5 = {Y ≥ 0} ∩ {−1 ≤ Y < 1} = {0 ≤ Y < 1}.

Unions and intersections can also applied iteratively,

A9 := A1 ∪ A2 ∪ A3 ∪ A5 ∪ A6 ∪ A7 ∪ A8 = {Y ∈ (−∞, 1] ∪ {2.5}},

and by taking complements, we obtain the full real line and the empty set:

A10 := A9 ∪ Ac
9 = {Y ∈ R},

A11 := Ac
10 = {}.
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You may verify that P (A1) = 0.5, P (A2) = 0.5, P (A3) = 0, P (A4) = 1 P (A5) = 0.5, P (A6) = 0,
P (A7) = 0.5, P (A8) = 0.5, P (A9) = 1, P (A10) = 1, P (A11) = 0. If you take the variables
education or wage, the probabilities of these events may be completely different.

To make probabilities a mathematically sound concept, we have to define to which events
probabilities are assigned and how these probabilities are assigned. We consider the concept of
a sigma algebra to collect all events.

Sigma algebra

A collection B of sets is called sigma algebra if it satisfies the following three properties:

1. {} ∈ B (empty set)

2. If A ∈ B then Ac ∈ B

3. If A1, A2, . . . ∈ B, then A1 ∪ A2 ∪ . . . ∈ B.

If you take all events of the form {Y ∈ (a, b)}, where a, b ∈ R ∪ {−∞, ∞}, and if you add all
unions, intersections, and complements of these events, and again all unions, intersections, and
complements of those events, and so on, you will obtain the so-called Borel sigma algebra.
The Borel sigma algebra contains all events we assign probabilities to, the Borel sets.

Probabilities must follow certain conditions. The following axioms ensure that these conditions
are fulfilled:

Probability function

A probability function P is a function P : B → [0, 1] that satisfies the Axioms of Probability:

1. P (A) ≥ 0 for every A ∈ B

2. P (Y ∈ R) = 1

3. If A1, A2, A3 . . . are disjoint then

A1 ∪ A2 ∪ A3 ∪ . . . = P (A1) + P (A2) + P (A3) + . . .

Recall that two events A and B are disjoint if they have no outcomes in common, i.e., if
A ∩ B = {}. For instance, A1 and A2 are A1 = {Y = 0} and A2 = {Y = 1} are disjoint, but
A1 and A4 = {Y ≥ 0} are not disjoint, since A1 ∩ A4 = {Y = 0} is nonempty.

Probabilities are a well-defined concept if we use the Borel sigma algebra and the axioms of
probability. The mathematical details are developed in the field of measure theory.
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The axioms of probability imply the following rules of calculation:

Basic rules of probability

• 0 ≤ P (A) ≤ 1 for any event A
• P (Ac) = 1 − P (A) for the complement event of A
• P (A ∪ B) = P (A) + P (B) − P (A ∩ B) for any events A, B (inclusion-exclusion principle)
• P (A) ≤ P (B) if A ⊂ B
• P (A ∪ B) = P (A) + P (B) if A and B are disjoint

1.4 Distribution

The distribution of a random variable Y is characterized by the probabilities of all events of
Y in the Borel sigma algebra. The distribution of the coin variable is fully characterized by
the probabilities P (Y = 1) = 0.5 and P (Y = 0) = 0.5. We can compute the probabilities of all
other events using the basic rules of probability. The probability mass function summarizes
these probabilities:

Probability mass function (PMF)

The probability mass function (PMF) of a random variable Y is

π(a) := P (Y = a), a ∈ R

The PMF of the coin variable is

π(a) = P (Y = a) =
{

0.5 if a ∈ {0, 1},

0 otherwise.

9



The education variable may have the following PMF:

π(a) = P (Y = a) =



0.008 if a = 4
0.048 if a = 10
0.392 if a = 12
0.072 if a = 13
0.155 if a = 14
0.071 if a = 16
0.225 if a = 18
0.029 if a = 21
0 otherwise

The PMF is useful for distributions where the sum of the PMF values over a discrete (finite
or countably infinite) number of domain points equals 1, as in the examples above. These
distributions are called discrete distributions.

Another example of a discrete distribution is the Poisson distribution with parameter λ > 0,
which has the PMF

π(a) =
{

e−λλa

a! if a = 0, 1, 2, 3, . . .

0 otherwise.

It has a countably infinite number of domain points with nonzero PMF values, and its
probabilities sum to 1, i.e.,

∑∞
a=0 π(a) = e−λ ∑∞

a=0
λa

a! = 1 since the exponential function has
the power series representation eλ =

∑∞
a=0

λa

a! .

Not all random variables are discrete, e.g., the wage variable takes values on a continuum. The
cumulative distribution function is a unifying concept summarizing the distribution of any
random variable.

1.5 Cumulative distribution function

Cumulative distribution function (CDF)

The cumulative distribution function (CDF) of a random variable Y is

F (a) := P (Y ≤ a), a ∈ R,
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The CDF of the variable coin is

F (a) =


0 a < 0,

0.5 0 ≤ a < 1,

1 a ≥ 1,

with the following CDF plot:

Figure 1.2: CDF of coin

The CDF of the variables education is

Figure 1.3: CDF of education

and the CDF of the variable wage may have the following form:

By the basic rules of probability, we can compute the probability of any event if we know the
probabilities of all events of the form {Y ≤ a}.

Some basic rules for the CDF (for a < b):

• P (Y ≤ a) = F (a)
• P (Y > a) = 1 − F (a)
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Figure 1.4: CDF of wage

• P (Y < a) = F (a) − π(a)
• P (Y ≥ a) = 1 − P (Y < a)
• P (a < Y ≤ b) = F (b) − F (a)
• P (a < Y < b) = F (b) − F (a) − π(b)
• P (a ≤ Y ≤ b) = F (b) − F (a) + π(a)
• P (a ≤ Y < b) = P (a ≤ Y ≤ b) − π(b)

Some CDFs have jumps/steps, and some CDFs are smooth/continuous. If F has a jump at
domain point a, then the PMF at a is

π(a) = P (Y = a) = F (a) − lim
ϵ→0

F (a − ϵ) = “jump height at a”. (1.1)

If F is continuous at domain point a, we have limϵ→0 F (a − ϵ) = F (a), which implies that
π(a) = P (Y = a) = 0.

We call the random variable a discrete random variable if the CDF contains jumps and is
flat between the jumps. A discrete random variable has only a finite (or countably infinite)
number of potential outcomes. The values of the PMF correspond to the jump heights in the
CDF as defined in Equation 1.1. The support Y of a discrete random variable Y is the set of
all points a ∈ R with nonzero probability mass, i.e. Y = {a ∈ R : π(a) > 0}. The probabilities
of a discrete random variable sum to 1, i.e.,

∑
a∈Y π(a) = 1.

The Bernoulli variables coin and female are discrete random variables with support Y = {0, 1}.
The variable eduaction has support Y = {4, 10, 12, 13, 14, 16, 18, 21}. A Poisson random variable
has thr support Y = N ∪ {0}.

We call a random variable a continuous random variable if the CDF is continuous at every
point a ∈ R. A continuous random variable has π(a) = P (Y = a) = 0 for all a ∈ R. The basic
rules for the CDF become simpler in the case of a continuous random variable:
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Rules for the CDF of a continuous random variable (for a < b):

• P (Y ≤ a) = P (Y < a) = F (a)
• P (Y ≥ a) = P (Y > a) = 1 − F (a)
• P (a < Y ≤ b) = P (a ≤ Y < b) = F (b) − F (a)
• P (a < Y < b) = P (a ≤ Y ≤ b) = F (b) − F (a)

Single-outcome events are null sets and occur with probability zero. Therefore, the PMF
is not suitable to describe the distribution of a continuous random variable. We use the
CDF to compute probabilities of interval events as well as their unions, intersections, and
complements.

Figure 1.5: CDF of wage evaluated at some points

For instance, P (Y ≤ 30) = 0.942, P (Y ≤ 20) = 0.779, P (Y ≤ 10) = 0.217, and P (10 ≤ Y ≤
20) = 0.779 − 0.217 = 0.562.

Quantiles

For a continuous random variable Y the α-quantile q(α) is defined as the solution to the
equation α = F (q(α)), or, equivalently, as the inverse of the distribution function:

q(α) = F −1(α)

• q(·) is a function from (0, 1) to R.
• Some quantiles have special names:

– The median is the 0.5 quantile.
– The quartiles are the 0.25, 0.5 and 0.75 quantiles.
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Figure 1.6: Quantiles of variable wage

– The deciles are the 0.1, 0.2,. . . , 0.9 quantiles.

From the quantile plot, we find that q(0.1) = 7.73, q(0.5) = 13.90, q(0.9) = 26.18. Under this
wage distribution, the median wage is 13.90 EUR, the poorest 10% have a wage of less than
7.33 EUR, and the richest 10% have a wage of more than 26.18 EUR.

Figure 1.7: Quantiles of variable education

The median of education is 13, the 0.1-quantile is 12, and the 0.9-quantile is 18.

A CDF has the following properties:

(i) it is non-decreasing,
(ii) it is right-continuous (jumps may occur only when the limit point is approached from

the left)
(iii) the left limit is zero: lima→−∞ F (a) = 0
(iv) the right limit is one: lima→∞ F (a) = 1.

Any function F that satisfies these four properties defines a probability distribution. Typically,
distributions are divided into discrete and continuous distributions. Still, it may be the case
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that a distribution does not fall into either of these categories (for instance, if a CDF has jumps
on some domain points and is continuously increasing on other domain intervals). In any case,
the CDF characterizes the entire distribution of any random variable.

1.6 Probability density function

For discrete random variables, both the PMF and the CDF characterize the distribution. In
the case of a continuous random variable, the PMF does not yield any information about the
distribution since it is zero. The continuous counterpart of the PMF is the density function:

Probability density function

The probability density function (PDF) or simply density function of a continuous random
variable Y is a function f(a) that satisfies

F (a) =
∫ a

−∞
f(u) du

The density f(a) is the derivative of the CDF F (a) if it is differentiable:

f(a) = d

da
F (a).

Properties of a PDF:

(i) f(a) ≥ 0 for all a ∈ R

(ii)
∫ ∞

−∞ f(u) du = 1

Figure 1.8: PDF of the variable wage
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Probability rule for the PDF:

P (a < Y < b) =
∫ b

a
f(u) du = F (b) − F (a)

1.7 Expected value

The expectation or expected value is the most important measure of the central tendency
of a distribution. It gives you the average value you can expect to get if you repeat the random
experiment multiple times. We define the expectation first for discrete random variables, then
continuous random variables, and finally give a unified definition for all random variables.

1.7.1 Expectation of a discrete random variable

The expectation or expected value of a discrete random variable Y with PMF π(·) and
support Y is defined as

E[Y ] =
∑
u∈Y

uπ(u).

For the coin variable, we have Y = {0, 1} and therefore

E[Y ] = 0 · π(0) + 1 · π(1) = 0.5.

For the variable education we get

E[Y ] = 4 · π(4) + 10 · π(10) + 12 · π(12)
+ 13 · π(13) + 14 · π(14) + 16 · π(16)
+ 18 · π(18) + 21 ∗ π(21) = 13.557

The expectation of a Poisson distributed random variable Y with parameter λ is

E[Y ] = 0 +
∞∑

a=1
a · e−λ λa

a! = e−λ
∞∑

a=1

λa

(a − 1)! = e−λ
∞∑

a=0

λa+1

a! = λe−λeλ = λ.

16



1.7.2 Expectation of a continuous random variable

The expectation or expected value of a of a continuous random variable Y with PDF f(·)
is

E[Y ] =
∫ ∞

−∞
uf(u) du.

Using numerical integration for the density of Figure 1.8 yields the expected value of 16.45
EUR for the wage variable, which is larger than the median value of 13.90 EUR. If the mean is
larger than the median, we have a positively skewed distribution, meaning that a few people
have high salaries, and many people have medium and low wages.

The uniform distribution on the unit interval [0, 1] has the PDF

f(u) =
{

1 if u ∈ [0, 1],
0 otherwise,

and the expected value of a uniformly distributed random variable Y is

E[Y ] =
∫ ∞

−∞
uf(u) du =

∫ 1

0
u du = 1

2 .

1.7.3 Expectation for general random variables

We can also define the expected value in a unified way for any random variable so we do not
have to distinguish between discrete and continuous random variables. Let F (·) be the CDF of
the random variable of interest and consider the differential dF (u), which corresponds to an
infinitesimal change in F (·) at u. For a discrete random variable, F (u) changes only if there is
a step/jump at u and zero otherwise because it is flat. Thus, for a discrete distribution,

dF (u) =
{

π(u) if u ∈ Y
0 if u /∈ Y.

In the case of a continuous random variable with differentiable CDF F (·), we have

dF (u) = f(u) du,

where f(·) is the PDF of the random variable. This gives rise to the following unified definition
of the expected value:

The expectation or expected value of any random variable with CDF F (·) is defined as

E[Y ] =
∫ ∞

−∞
u dF (u). (1.2)
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Note that Equation 1.2 is the Riemann-Stieltjes integral of a with respect to the function F (·).
Recall that the Riemann integral of u with respect to u over the interval [−1, 1] is

∫ 1

−1
u du := lim

N→∞

2N∑
j=1

( j

N
− 1

)(( j
N − 1

)
−

( j−1
N − 1

))
= lim

N→∞

2N∑
j=1

( j

N
− 1

) 1
N

,

for the interval [−z, z] we have

∫ z

−z
u du := lim

N→∞

2N∑
j=1

z
( j

N
− 1

) z

N
,

and we obtain
∫ ∞

−∞ u du := limz→∞
∫ z

−z u du for the integral over the entire real line. Note that
z/N = z( j

N − 1) − z( j−1
N − 1) corresponds to a change in u on [−z, z] so we approximate

du ≈ z
( j

N − 1
)

− z
( j−1

N − 1
)

= z
N

and let N tend to infinity. In the case of the Riemann-Stieltjes integral, where we integrate
with respect to changes in a function F (·), i.e., dF (u). In an interval [−z, z], we have

dF (u) ≈ F
(
z
( j

N − 1
))

− F
(
z
( j−1

N − 1
))

,

and we define ∫ z

−z
u dF (u) := lim

N→∞

2N∑
j=1

z
(

j
N − 1

)
F

(
z
( j

N − 1
))

− F
(
z
( j−1

N − 1
))

∫ ∞

−∞
u dF (u) := lim

z→∞

∫ z

−z
u dF (u)

1.7.4 Properties of the expected value

The expected value is a measure of central tendency. It is a linear function. For any two
random variables Y and Z and any a, b ∈ R, we have

E[aY + bZ] = aE[Y ] + bE[Z].

The expected value has some optimality properties in terms of prediction. The best predictor of
a random variable Y in the mean square error sense is the value g∗ that minimizes E[(Y − g)2]
over g. We have

E[(Y − g)2] = E[Y 2] − 2gE[Y ] + g2,
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and minimizing over g yields

dE[(Y − g)2]
dg

= −2E[Y ] + 2g,

which is zero if g = E[Y ]. The second derivative is positive. Therefore, the expected value is the
best predictor for a random variable if you do not have any further information available.

We often transform random variables by taking, for instance, squares Y 2 or logs log(Y ). For
any transformation function g(·), the expectation of the transformed random variable g(Y ) is

E[g(Y )] =
∫ ∞

−∞
g(u) dF (u),

where dF (u) can be replaced by the PMF or the PDF as discussed in Section 1.7.3 for the
different cases. For instance, if we take the coin variable Y and consider the transformed
random variable log(Y + 1), the expected value is

E[log(Y + 1)] = log(1) · 1
2 + log(2) · 1

2 = log(2)
2

Moments

The r-th moment of a random variable Y is defined as

E[Y r] =
∫ ∞

−∞
ur dF (u) =

{∑
u∈Y urπ(u) if Y is discrete,∫ ∞

−∞ urf(u)du if Y is continuous.

1.8 Descriptive features of a distribution

Table 1.2: Some important features of the distribution of Y

E[Y r] r-th moment of Y
E[(Y − E[Y ])r] r-th central moment of Y
V ar[Y ] = E[(Y − E[Y ])2] variance of Y
sd(Y ) =

√
V ar[Y ] standard deviation of Y

E[((Y − E[Y ])/sd(Y ))r] r-th standardized moment of Y
skew = E[((Y − E[Y ])/sd(Y ))3] skewness of Y
kurt = E[((Y − E[Y ])/sd(Y ))4] kurtosis of Y

The mean is a measure of central tendency and equals the expected value. The variance and
standard deviation are measures of dispersion. We have

V ar[Y ] = E[(Y − E[Y ])2] = E[Y 2] − E[Y ]2
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and
V ar[a + bY ] = b2V ar[Y ]

for any a, b ∈ R. The skewness

skew = E[(Y − E[Y ])3]
sd(Y )3 = E[Y 3] − 3E[Y 2]E[Y ] + 2E[Y ]3

(E[Y 2] − E[Y ]2)3/2

is a measure of asymmetry

Positive skewNegative skew

Figure 1.9: Positive and negative skewness

A random variable Y has a symmetric distribution about 0 if F (u) = 1 − F (−u). If Y has
a density, it is symmetric if f(x) = f(−x). If Y is symmetric about 0, then the skewness is 0.
The skewness of the variable wage (see Figure 1.8) is positive, i.e., the distribution is positively
skewed. The standard normal distribution N (0, 1) , which has the density

f(u) = ϕ(u) = 1√
2π

e−u2/2.

Below you find a plot of the PDFs of N(0, 1) together with the t5-distribution, which is the
t-distribution with 5 degrees of freedom:

Figure 1.10: PDFs of the standard normal distribution (solid) and the t5-distribution (dashed)

The standard normal distribution and the t(5) distribution have skewness 0. The kurtosis

kurt = E[(Y − E[Y ])4]
sd(Y )4 = E[Y 4] − 4E[Y 3]E[Y ] + 6E[Y 2]E[Y ]2 − 3E[Y ]4

(E[Y 2] − E[Y ]2)2
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is a measure of how likely extreme outliers are. The standard normal distribution has kurtosis 3
and the t(5) distribution has kurtosis 9 so that outliers in t(5) are more likely than in N (0, 1):

par(mfrow=c(1,2), cex.main=1)
plot(rnorm(1000), main = "1000 simulated values of N(0,1)", ylab = "")
plot(rt(1000,5), main = "1000 simulated values of t(5)", ylab = "")
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Index

0 400 800

−
5

0
5
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Index

The kurtosis of the variable wage is also larger than 3, meaning outliers are much more likely
than in the standard normal distribution. In this case, the positive skewness means that more
people have a wage less than the average, and the large kurtosis means that there are very few
people with exceptionally high salaries (outliers).

All features discussed above are functions of the first four moments E[Y ], E[Y 2], E[Y 3] and
E[Y 4].

1.8.1 Heavy-tailed distributions

Expectations might be infinity. For instance, the simple Pareto distribution has the PDF

f(a) =
{ 1

a2 if a > 1,

0 if a ≤ 1,

and the expected value is

E[X] =
∫ ∞

−∞
af(a) da =

∫ ∞

1

1
a

da = log(a)|∞1 = ∞.

The game of chance from the St. Petersburg paradox (see https://en.wikipedia.org/wiki/St._
Petersburg_paradox) is an example of a discrete random variable with infinite expectation.
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There are distributions with finite mean with some higher moments that are infinite. For
instance, the first m − 1 moments of the tm distribution (Student’s-t distribution with m
degrees of freedom) are finite, but the m-th moment and all higher order moments are infinite.
Random variables with infinite first four moments have a so-called heavy-tailed distribution
and may produce huge outliers. Many statistical procedures are only valid if the underlying
distribution is not heavy-tailed.

1.9 The normal distribution

A random variable X is normally distributed with parameters (µ, σ2) if it has the density

f(a | µ, σ2) = 1√
2πσ2

exp
(

− (a − µ)2

2σ2

)
.

We write Y ∼ N (µ, σ2). Mean and variance are

E[Y ] = µ, var[Y ] = σ2.

Special case: standard normal distribution N (0, 1) with density

ϕ(a) = 1√
2π

exp
(

− a2

2
)

and CDF
Φ(a) =

∫ a

−∞
ϕ(u)du.

N (0, 1) is symmetric around zero:

ϕ(a) = ϕ(−a), Φ(a) = 1 − Φ(−a)

par(mfrow=c(1,2), bty="n", lwd=1)
x <- seq(-5,9,by=0.01)
plot(x,dnorm(x,2,2),ylab="",xlab="", type="l", main= "PDF of N(2,2)")
plot(x,pnorm(x,2,2),ylab="",xlab="", type="l", main = "CDF of N(2,2)")
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If Y1, . . . , Yn are normally distributed and c1, . . . , cn ∈ R, then
∑n

j=1 cjYj is normally dis-
tributed.

1.10 Additional reading

• Stock and Watson (2019), Section 2
• Hansen (2022a), Section 1-2
• Davidson and MacKinnon (2004), Section 1

1.11 R-codes

statistics-sec2.R
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2 Dependence

2.1 Multivariate random variables

In statistics, we typically study multiple random variables simultaneously. We can collect k
random variable X1, . . . , Xk in a random vector

X =

X1
...

Xk

 = (X1, . . . , Xk)′.

We also call X a k-variate random variable.

Since X is a random vector, its outcome is also vector-valued, e.g. X = x ∈ Rk with x =
(x1, . . . , xk)′. Events of the form {X ≤ x} mean that each component of the random vector X
is smaller than the corresponding values of the vector x, i.e.

{X ≤ x} = {X1 ≤ x1, . . . , Xk ≤ xk}.

2.2 Bivariate random variables

If k = 2, we call X a bivariate random variable. Consider, for instance, the coin toss
Bernoulli variable Y with P (Y = 1) = 0.5 and P (Y = 0) = 0.5, and let Z be a second coin toss
with the same probabilities. X = (Y, Z) is a bivariate random variable where both entries are
discrete random variables. Since the two coin tosses are performed separately from each other,
it is reasonable to assume that the probability that the first and second coin tosses show ‘heads’
is 0.25, i.e., P ({Y = 1} ∩ {Z = 1}) = 0.25. We would expect the following joint probabilities:

Table 2.1: Joint probabilities of coin tosses

Z = 1 Z = 0 any result
Y = 1 0.25 0.25 0.5
Y = 0 0.25 0.25 0.5
any result 0.5 0.5 1
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The probabilities in the above table characterize the joint distribution of Y and Z. The
table shows the values of the joint probability mass function:

πY Z(a, b) =
{

0.25 if a ∈ {0, 1} and b ∈ {0, 1}
0 otherwise

Another example are the random variables Y , a dummy variable for the event that the person
has a high wage (more than 25 USD/hour), and Z, a dummy variable for the event that the
same person has a university degree. Similarly, X = (Y, Z) is a bivariate random variable
consisting of two univariate Bernoulli variables. The joint probabilities might be as follows:

Table 2.2: Joint probabilities of wage and education dummies

Z=1 Z=0 any education
Y=1 0.19 0.12 0.31
Y=0 0.17 0.52 0.69
any wage 0.36 0.64 1

The joint probability mass function is

πY Z(a, b) =



0.19 if a = 1, b = 1,

0.12 if a = 1, b = 0,

0.17 if a = 0, b = 1,

0.52 if a = 0, b = 0,

0 otherwise.

The marginal probability mass function of Y is

πY (a) = P (Y = a) = πY Z(a, 0) + πY Z(a, 1)

=


0.19 + 0.12 = 0.31 if a = 1,

0.17 + 0.52 = 0.69 if a = 0,

0 otherwise.

and the marginal probability mass function of Z is

πZ(b) = P (Z = b) = πY Z(0, b) + πY Z(1, b)

=


0.19 + 0.17 = 0.36 if b = 1,

0.12 + 0.52 = 0.64 if b = 0,

0 otherwise.

An example of a continuous bivariate random variable is X = (Y, Z), where Y is the wage level
in EUR/hour and Z is the labor market experience of the same person measured in years.
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2.3 Bivariate distributions

Bivariate distribution

The joint distribution function of a bivariate random variable (Y, Z) is

FY Z(a, b) = P (Y ≤ a, Z ≤ b) = P ({Y ≤ a} ∩ {Z ≤ b}).

Figure 2.1: Joint CDF of wage and experience

Calculation of probabilities using a bivariate distribution function:

P (Y ≤ a, Z ≤ b) = FY Z(a, b)
P (a < Y ≤ b, c < Z ≤ d) = FY Z(b, d) − FY Z(b, c) − FY Z(a, d) + FY Z(a, c)

Marginal distributions

The marginal distributions of Y and Z are

FY (a) = P (Y ≤ a) = P (Y ≤ a, Z < ∞) = lim
b→∞

FY Z(a, b),

FZ(b) = P (Z ≤ b) = P (Y < ∞, Z ≤ b) = lim
a→∞

FY Z(a, b)

Bivariate density function
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Figure 2.2: Calculate probabilities using the joint CDF

Figure 2.3: Calculate probabilities using the joint CDF

Figure 2.4: Marginal CDF of experience
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Figure 2.5: Marginal CDF of wage

The joint density function of a bivariate continuous random variable (Y, Z) with differentiable
joint CDF FY Z(a, b) equals

fY Z(a, b) = ∂2

∂a∂b
FY Z(a, b).

The marginal densities of Y and Z are

fY (a) = d

da
FY (a) =

∫ ∞

−∞
fY Z(a, b)db,

fZ(b) = d

db
FZ(b) =

∫ ∞

−∞
fY Z(a, b)da.

2.4 Correlation

Consider the bivariate continuous random variable (Y, Z) with joint density fY Z(a, b). The
expected value of g(Y, Z), where g(·, ·) is any real-valued function, is given by

E[g(X, Y )] =
∫ ∞

−∞

∫ ∞

−∞
g(a, b)fY Z(a, b) da db.

The first cross moment of Y and Z is E[Y Z]. We have E[Y Z] = E[g(Y, Z)] for the function
g(Y, Z) = Y · Z. Therefore,

E[Y Z] =
∫ ∞

−∞

∫ ∞

−∞
abfY Z(a, b) da db.
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Figure 2.6: Joint CDF of wage and experience

Figure 2.7: Joint PDF of wage and experience
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The covariance of Y and Z is defined as

Cov(Y, Z) = E[(Y − E[Y ])(Z − E[Z])] = E[Y Z] − E[Y ]E[Z].

The covariance of Y and Y is the variance:

Cov(Y, Y ) = V ar[Y ].

The variance of the sum of two random variables depends on the covariance:

V ar[Y + Z] = V ar[Y ] + 2Cov(Y, Z) + V ar[Z]

The correlation of Y and Z is

Corr(Y, Z) = Cov(Y, Z)
sd(Y )sd(Z)

Uncorrelated

Y and Z are uncorrelated if Corr(Y, Z) = 0, or, equivalently, if Cov(Y, Z) = 0.

If Y and Z are uncorrelated, we have

E[Y Z] = E[Y ]E[Z]
var[Y + Z] = var[Y ] + var[Z]

2.5 Independence

Two events A and B are independent if

P [A ∩ B] = P [A]P [B].

For instance, in the bivariate random variable of Table 2.1 (two coin tosses), we have

P (Y = 1, Z = 1) = 0.25 = 0.5 · 0.5 = P (Y = 1)P (Z = 1).

Hence, {Y = 1} and {Z = 1} are independent events. In the bivariate random variable of
Table 2.2 (wage/education), we find

P (Y = 1, Z = 1) = 0.19 ̸= P (Y = 1)P (Z = 1) = 0.31 · 0.36 = 0.1116.

Therefore, the two events are not independent. In this case, the two random variables are
dependent.
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Independence

Y and Z are independent random variables if, for all a and b, the bivariate distribution
function is the product of the marginal distribution functions:

FY Z(a, b) = FY (a)FZ(b).

If this property is not satisfied, we say that X and Y are dependent.

The random variables Y and Z of Table 2.1 are independent, and those of Table 2.2 are
dependent.

If Y and Z are independent and have finite second moments, then Y and Z are uncorrelated.
The reverse is not true!

2.6 Random vectors

The above concepts can be generalized to any k-variate random vector X = (X1, . . . , Xk). The
joint CDF of X is

FX(x) = P (X1 ≤ x1, . . . , Xk ≤ xk).
X has independent entries if

FX(x) =
k∏

i=1
P (Xi ≤ xi) =

k∏
i=1

FXi(xi)

If FX(x) is a continuous CDF, the joint k-dimensional density is

fX(x) = fX(x1, . . . , xk) = ∂k

∂x1 · · · ∂xk
FX(x1, . . . , xk).

The expectation vector of X is

E[X] =

E[X1]
...

E[Xk]

 ,

and the covariance matrix of X is

V ar[X] = E[(X − E[X])(X − E[X])′]

=


V ar[X1] Cov(X1, X2) . . . Cov(X1, Xk)

Cov(X2, X1) V ar[X2] . . . Cov(X2, Xk)
...

... . . . ...
Cov(Xk, X1) Cov(Xk, X2) . . . V ar[Xk]
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For any random vector X, the covariance matrix V ar[X] is symmetric and positive semi-
definite.

2.7 Conditional distributions

Conditional probability

The conditional probability of an event A given an event B with P (B) > 0 is

P (A | B) = P (A ∩ B)
P (B)

Let’s revisit the wage and schooling example from Table 2.2:

P (Y = 1 | Z = 1) = P ({Y = 1} ∩ {Z = 1})
P (Z = 1) = 0.19

0.36 = 0.53

P (Y = 1 | Z = 0) = P ({Y = 1} ∩ {Z = 0})
P (Z = 0) = 0.12

0.64 = 0.19

Note that
P (Y = 1 | Z = 1) = 0.53 > 0.31 = P (Y = 1)

implies
P ({Y = 1} ∩ {Z = 1}) > P (Y = 1) · P (Z = 1).

If P (A | B) = P (A), then the events A and B are independent. If P (A | B) ̸= P (A), they are
dependent.

Conditional distribution of continuous variables

Consider the density fY Z(a, b) of two continuous random variables Y and Z. The conditional
density of Y given Z = b is

fY |Z(a | b) = fY Z(a, b)
fZ(b) .

The conditional distribution of Y given Z = b is

FY |Z(a | b) =
∫ a

0
fY |Z(u | b) du.
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Figure 2.8: Joint PDF of wage and experience

Figure 2.9: Conditional PDFs of wage given experience
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Figure 2.10: PDF of variable experience

If Y is continuous and Z is discrete, the conditional distribution function of Y given
{Z = b} with P (Z = b) > 0 is

FY |Z(a | b) = P (Y ≤ a | Z = b) = P (Y ≤ a, Z = b)
P (Z = b) .

If FY |Z(a | b) is differentiable with respect to b, the conditional density of Y given Z = b is

fY |Z(a | b) = ∂

∂a
FY |Z(a | b).

Figure 2.11: Conditional CDFs of wage given education

We often are interested in conditioning on multiple variables, such as the wage given a
particular education and experience level. Let f(y, x) = f(y, x1, . . . , xk) be the joint density of
the composite random vector (Y, X1, . . . , Xk) with X = (X1, . . . , Xk). The conditional density
of a random variable Y given X = x = (x1, . . . , xk)′ is

fY |X(y | x) = f(y | x1, . . . , xk) = f(y, x1, . . . , xk)
fX(x1, . . . , xk) = f(y, x)

fX(x)
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Figure 2.12: Conditional PDFs of wage given education

The conditional distribution of Y given X = x is

FY |X(y | x) =
∫ y

0
f(u | x) du.

2.8 Conditional expectation

Conditional expectation function

The conditional expectation of Y given X = x is the expected value of the distribution
FY |X(y | x). For continuous Y with conditional density fY |X(y | x), the conditional expectation
is

E[Y | X = x] =
∫ ∞

−∞
yfY |X(y | x) dy.

Consider again the wage and experience example. Suppose that the conditional expectation
has the functional form

E[wage | experience = x] = m(x) = 14.5 + 0.9x − 0.017x2.

E.g., for x = 10 we have E[wage | experience = 10] = m(10) = 21.8.

Note that m(x) = E[wage | experience = x] is not random. It is a feature of the joint
distribution.

Sometimes, it is useful not to fix the experience level to a certain value but to treat it as
random:
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(a) CEF wage given experience (b) CEF wage given education

Figure 2.13: Conditional expectation functions

E[wage | experience] = m(experience)
= 14.5 + 0.9experience − 0.017experience2

m(experience) = E[wage | experience] is a function of the random variable experience and,
therefore, itself a random variable.

The conditional expectation function (CEF) of Y given the specific event {X = x} is

m(x) = E[Y | X = x].

m(x) is deterministic (non-random) and a feature of the joint distribution.

The conditional expectation function (CEF) of Y given the random vector X is

m(X) = E[Y | X].

m(X) is a function of the random vector X and therefore itself a random variable.

2.9 Law of iterated expectations

Rules of calculation for the conditional expectation
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Let Y be a random variable and X a random vector.

(i) Law of the iterated expectations (LIE):

E[E[Y | X]] = E[Y ].

A more general LIE: For any two random vectors X and X̃,

E[E[Y | X, X̃] | X] = E[Y | X].

(ii) Conditioning theorem (CT): For any function g(·),

E[g(X)Y | X] = g(X)E[Y | X].

(iii) If Y and X are independent then E[Y | X] = E[Y ].

2.10 Conditional variance

Conditional variance

If E[Y 2] < ∞, the conditional variance of Y given the event {X = x} is

V ar[Y | X = x] = E[(Y − E[Y | X = x])2 | X = x].

The conditional variance of Y given the random vector X is

V ar[Y | X] = E[(Y − E[Y | X])2 | X].

2.11 Best predictor

A typical application is to find a good prediction for the outcome of a random variable Y .
Recall that the expected value E[Y ] is the best predictor for Y in the sense that g∗ = E[Y ]
minimizes E[(Y − g)2].

With the knowledge of an additional random vector X, we can use the joint distribution of Y
and X to improve the prediction of Y .

It turns out that the CEF m(X) = E[Y | X] is the best predictor for Y given the information
contained in the random vector X:

Best predictor

If E[Y 2] < ∞, then the CEF m(X) = E[Y | X] minimizes the expected squared error
E[(Y − g(X))2] among all predictor functions g(X).
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Let us find the function g(·) that minimizes E[(Y − g(X))2]:

E[(Y − g(X))2] = E[(Y − m(X) + m(X) − g(X))2]
= E[(Y − m(X))2]︸ ︷︷ ︸

=(i)

+2 E[(Y − m(X))(m(X) − g(X))]︸ ︷︷ ︸
=(ii)

+ E[(m(X) − g(X))2]︸ ︷︷ ︸
(iii)

The first term (i) does not depend on g(·) and is finite if E[Y 2] < ∞.

For the second term (ii), we use the LIE and CT:

E[(Y − m(X))(m(X) − g(X))]
= E[E[(Y − m(X))(m(X) − g(X)) | X]]
= E[E[Y − m(X) | X](m(X) − g(X))]
= E[(E[Y | X]︸ ︷︷ ︸

=m(X)

−m(X))(m(X) − g(X))] = 0

The third term (iii) E[(m(X) − g(X))2] is minimal if m(·) = g(·)

Therefore, m(X) = E[Y | X] minimizes E[(Y − g(X))2].

The best predictor for Y given X is m(X) = E[Y | X], but Y can typically only partially be
predicted. We have a prediction error (CEF error)

e = Y − E[Y | X].

The conditional expectation of the CEF error does not depend on X and is zero:

E[e | X] = E[(Y − m(X)) | X]
= E[Y | X] − E[m(X) | X]
= m(X) − m(X) = 0

We say that Y is conditional mean independent of Z if E[Y | Z] does not depend on Z.

If Y and Z are independent, they are also conditional mean independent, but not necessarily
vice versa. If Y and Z are conditional mean independent, they are also uncorrelated, but not
necessarily vice versa.

Since the CEF is the best predictor of Y, it is of great interest to study the CEF in practice.
Much of the statistical and econometric research deals with methods to approximate and
estimate the CEF. This field of statistics is called regression analysis.
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Consider the following model for Y and X:

Y = m(X) + e, E[e | X] = 0. (2.1)

We call m(·) regression function and e error term.

From equation Equation 2.1 it follows that

E[Y | X] = E[m(X) + e | X] = E[m(X) | X] + E[e | X] = m(X).

I.e., the nonparametric regression model is a model for the CEF.

If m(·) is a linear function, then Equation 2.1 is a linear regression model. We will study
this model in detail in the next sections.

2.12 Combining normal variables

Some of the distributions commonly encountered in econometrics are combinations of uni-
variate normal distributions, such as the multivariate normal, chi-squared, Student t, and F
distributions.

2.12.1 χ2-distribution

Let Z1, . . . , Zm be independent N (0, 1) random variables. Then, the random variable

Y =
m∑

i=1
Z2

i

is chi-square distributed with parameter m, written Y ∼ χ2
m.

The parameter m is called the degrees of freedom.

Expectation and variance:
E[Y ] = m, var[Y ] = 2m

2.12.2 F -distribution

If Q1 ∼ χ2
m and Q2 ∼ χ2

r , and if Q1 and Q2 are independent, then

Y = Q1/m

Q2/r

is F -distributed with parameters m and r, written Y ∼ Fm,r.

The parameter m is called the degrees of freedom in the numerator; r is the degree of freedom
in the denominator.

If r → ∞ then the distribution of mY approaches χ2
m
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Figure 2.14: χ2 -distribution
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Figure 2.15: F -distribution
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2.12.3 Student t-distribution

If Z ∼ N (0, 1) and Q ∼ χ2
m, and Z and Q are independent, then

Y = Z√
Q/m

is t-distributed with parameter m degrees of freedom, written Y ∼ tm.

Expectation, variance, and moments:

E[Y ] = 0 (if m ≥ 2),

var[Y ] = m

m − 2 (if m ≥ 3)

The first m − 1 moments are finite: E[|Y |r] < ∞ for r ≤ m − 1 and E[|Y |r] = ∞ for r ≥ m.

The t-distribution with m = 1 is also called Cauchy distribution. The t-distributions with 1,
2, 3, and 4 degrees of freedom are heavy-tailed distributions. If m → ∞ then tm → N (0, 1)
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Figure 2.16: Student t-distribution

2.12.4 Multivariate normal distribution

Let X1, . . . , Xk be independent N (0, 1) random variables. Then, the k-vector X = (X1, . . . , Xk)′

has the multivariate standard normal distribution, written X ∼ N (000, IIIk). Its joint density
is

f(x) = 1
(2π)k/2 exp

(
−x′x

2

)
.
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If X ∼ N (000, IIIk) and X̃ = µ + BBBX for a q × 1 vector µ and a q × k matrix BBB, then X̃ has a
multivariate normal distribution with parameters µ and Σ = BBBBBB′, written X̃ ∼ N (µ, Σ).
Its joint density is

f(x) = 1
(2π)k/2(det(Σ))1/2 exp

(
− 1

2(x − µ)′Σ−1(x − µ)
)
.

The expectation vector and covariance matrix are

E[X̃] = µ, var[X̃] = Σ.

2.12.5 R-commands for parametric distributions

get CDF
F (a)

quantile function
q(p)

generate n independent
random numbers

N (0, 1) pnorm(a) qnorm(p) rnorm(n)
χ2

r pchisq(a,r) qchisq(p,r) rchisq(n,r)
tr pt(a,r) qt(p,r) rt(n,r)
Fr,k pf(a,r,k) qf(p,r,k) rf(n,r,k)

2.13 Additional reading

• Stock and Watson (2019), Section 2
• Hansen (2022a), Section 4
• Hansen (2022b), Section 2
• Davidson and MacKinnon (2004), Section 1
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